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Background: Arsenic exposure is a risk factor for atherosclerosis in adults, but there is little 
information on arsenic and early risk biomarkers for atherosclerosis in children. Carotid intima-
media thickness (cIMT) is an indicator of subclinical atherosclerotic burden that has been associ-
ated with plasma asymmetric dimethylarginine (ADMA), a predictor of cardiovascular disease risk.

Objectives: The aim of this study was to investigate associations of arsenic exposure with cIMT, 
ADMA, and endothelial adhesion molecules [soluble intercellular cell adhesion molecule‑1 
(sICAM‑1); soluble vascular cell adhesion molecule‑1 (sVCAM‑1)] in children who had been 
exposed to environmental inorganic arsenic (iAs).

Methods: We conducted a cross-sectional study in 199 children 3–14 years of age who were 
residents of Zimapan, México. We evaluated cIMT using ultrasonography, and plasma lipid profiles 
by standard methods. We analyzed ADMA, sICAM-1, and sVCAM-1 by ELISA, and measured 
the concentrations of total speciated arsenic (tAs) in urine using hydride generation cryotrapping 
atomic absorption spectrometry. 

Results: In the multiple linear regression model for cIMT, tAs categories were positively associated 
with cIMT increase. The estimated cIMT diameter was greater in 35- to 70‑ng/mL and > 70‑ng/mL 
groups (0.035 mm and 0.058 mm per 1‑ng/mL increase in urinary tAs, respectively), compared with 
the < 35‑ng/mL group. In addition to tAs level, plasma ADMA was a significant predictor of cIMT. 
In the adjusted regression model, cIMT, percent iAs, and plasma sVCAM-1 were significant predic-
tors of ADMA levels (e.g., 0.419‑μmol/L increase in ADMA per 1‑mm increase in cIMT).

Conclusions: Arsenic exposure and plasma ADMA levels were positively associated with cIMT 
in a population of Mexican children with environmental arsenic exposure through drinking water.
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Introduction
Inorganic arsenic (iAs) is naturally occurring 
and ubiquitous in the environment. In most 
populations, drinking water is the main source 
of human exposure. Long-term exposure to 
iAs has been associated with coronary disease, 
stroke, ischemic heart disease, hypertension, 
and carotid atherosclerosis in adults (States 
et al. 2009). Epidemiologic studies conducted 
in Taiwan have demonstrated that long-term 
iAs exposure is significantly associated with 
carotid atherosclerosis in adults, with a positive 
dose–response relationship after adjustment for 
other cardiovascular risk factors, which sug-
gests that iAs exposure may be an indepen-
dent risk factor for atherosclerosis (Wang et al. 
2002, 2007). However, to our knowledge, 
there have been no epidemiologic studies on 
the role of iAs exposure in atherosclerosis ini-
tiation or progression in pediatric populations. 
Atherosclerosis is a multistage disease that can 
initiate in childhood and remain subclinical 
until adulthood, when it becomes clinically 
manifest. Carotid artery wall intima-media 
thickness (cIMT) is a widely accepted indica-
tor of subclinical atherosclerotic burden, and 

its determination could be useful in identifying 
young adults at risk for premature coronary 
atherosclerosis (Slyper 2004). Epidemiologic 
evidence suggests a close association between 
cIMT and plasma asymmetric dimethyl
arginine (ADMA) concentrations (Ayer et al. 
2009). ADMA at baseline predicted subse-
quent cardiovascular disease in a 22-year 
follow-up study of adult women (Leong et al. 
2008). Clinical conditions with elevated 
plasma ADMA concentrations in children 
included hypertension, hypercholesterolemia, 
chronic kidney disease, and diabetes mellitus 
(Tain and Huang 2011). However, there is 
little toxicologic evidence regarding ADMA. 
The association of ADMA with adverse clinical 
events could be related to the attenuation of 
the vascular protective effects of nitric oxide 
(NO). In animal models, local inhibition of 
NO accelerates early neointima formation 
(Cayatte et al. 1994). Moreover, Nanayakkara 
et  al. (2005) found a positive association 
between ADMA and soluble vascular adhesion 
molecule‑1 (sVCAM‑1), a molecule expressed 
in activated endothelial cells, in patients with 
mild to moderate renal failure. 

The aim of the present study was to inves-
tigate the association between iAs exposure 
and cIMT, plasma ADMA, and endothelial 
adhesion molecules in a pediatric population 
exposed to environmental iAs.

Materials and Methods
Study participants. A cross-sectional study 
was conducted in 199 children (3–14 years 
of age) who were residents of the Zimapan 
region in Mexico. This study was approved 
by the Institutional Review Board of 
CINVESTAV-IPN (Centro de Investigación 
y de Estudios Avanzados del Instituto 
Politécnico Nacional). In this area, high 
concentrations of naturally occurring iAs are 
frequently found in the bedrock and conse-
quently in underground and surface waters 
(Armienta et al. 1997). The children were 
recruited from two local schools and were 
residents of five area towns (Calvario, Llano 
Norte, Aguacatal, Muhi, and Downtown). 
At the time of evaluation, arsenic levels mea-
sured in the drinking water of these towns 
ranged from 3 to 135  ng As/mL. Before 
enrollment in the study, the parents read 
and signed a written informed consent form. 
Parents were interviewed by trained inter-
viewers on general characteristics, with an 
emphasis on the source of drinking water, 
marine food consumption, secondhand 
smoking exposure, detailed residential infor-
mation including whether the mother lived 
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in Zimapan area during pregnancy (yes/no), 
child allergies, child surgery interventions, 
medication, and child medical history. Only 
children with a minimum of 1 year of resi-
dency in the Zimapan region were eligible to 
participate. Children with diabetes or cardio-
vascular disease were excluded.

Child examination and sample collection. 
Children were examined by an expert cardiol-
ogist who was blinded to the study design and 
participants’ clinical data. The children were 
examined using a cardiovascular ultrasound 
system (Vivid i®; General Electric, Milwaukee, 
WI, USA) equipped with a 14-MHz linear 
transducer; the examiner followed a stan-
dardized protocol using B‑mode ultrasound 
with the child in a supine position with the 
head turned slightly to the left and then right 
(Pignoli et al. 1986). cIMT was calculated 
based on automatic contour detection of the 
intima and media layers in a user-defined 
search region along the vessel wall. Multiple 
cIMT measurements were made between 
pairs of intima and adventitia points along 
the posterior wall of the vessel. The following 
parameters were calculated: average cIMT 
(cIMTmean), maximum cIMT (cIMTmax), 
and minimum cIMT (cIMTmin).

We measured body weight and height 
using standard protocols. We calculated the 
body mass index (BMI) using the formula: 
weight (kilograms)/height (meters squared). 
The BMI z-score was calculated, with BMI 
categorized based on guidelines of the Centers 
for Disease Control and Prevention (2000). 
Each participant provided a first morning 
void urine sample. Urinalysis was performed 
immediately, and samples were stored at 
–20°C at the local health clinic until they 
were transported with cooling blocks to 
Mexico City for further analysis. A sample 
of approximately 12‑hr fasting venous blood 
was collected. Plasma was prepared from 
blood samples by centrifugation at 4°C and 
stored at –80°C.

Analysis of As in water and urine. Arsenic 
analysis included the analysis of sodium arse-
nite (NaAsIIIO2) and arsenic acid disodium 
salt (Na2HAsVO4). Both of these chemi-
cals (> 99% pure) and dimethylarsinic acid 
[DMAsV; as (CH3)2AsVO(OH); 99% pure] 
were obtained from Sigma Chemical Co. 
(St. Louis, MO, USA). Methylarsonic acid 
(MAsV) disodium salt [CH3AsVO(ONa)2; 
99% pure] was obtained from Ventron 
(Danvers, MA, USA). Working standards of 
these arsenicals, which contained 1 µg As/mL, 
were prepared daily from stock solutions. 
Sodium borohydride (NaBH4) and l‑cysteine 
hydrochloride were obtained from EM 
Science (Gibbstown, NJ, USA). Ultrapure 
Tris-hydrochloride monohydrate was pur-
chased from Sigma, and Tris-hydrochloride 
was purchased from J.T. Baker (Phillipsburg, 

NJ, USA). All other chemicals used were at 
least analytical grade. 

The concentrations of total arsenic (tAs) 
in drinking water were determined by HG 
(hydride generation)–atomic fluorescence 
spectrometry, as previously described (Le and 
Ma 1998). Trace elements in standard water 
reference material [SRM 1643e; National 
Institute of Standards and Technology 
(NIST), Gaithersburg, MD, USA] containing 
60.4 ± 0.7 ng As/mL were used for quality 
control. HG-atomic absorption spectrometry 
with a cryotrap for the capture and separa-
tion of hydrides was used for the analysis of 
iAs and its metabolites in urine (Hernández-
Zavala et al. 2008). We used standard refer-
ence material (SRM 2669) from NIST for 
quality control in measurements of arsenic 
species in frozen human urine. We used SRM 
2669 level 1 and level 2 to validate the analy-
sis of arsenic species at low and elevated con-
centrations in the urine matrix, respectively. 
The low tAs concentration urine sample at 
SRM 2669 level 1 had a reference value of 
9.22 ± 0.32 ng As/mL, and the reference 
value was 43.67 ± 0.63 ng As/mL for the 
high tAs concentration at SRM 2669 level 2. 
Replicate analyses of SRM 2669 showed 
values with < 10% coefficient of variation of 
reference values for the high and low stan-
dards. The sum of the concentrations of iAs, 
MAs, and DMAs in urine was reported as tAs.

Plasma analyses. The concentrations of 
glucose, total cholesterol, triglycerides, and 
high-density lipoprotein (HDL) were mea-
sured in plasma by the end-point enzymatic 
method using fully automatic biochemistry 
analyzer (SYNCHRON LX 20; Beckman 
Coulter, Mexico). Values of very low-density 
lipoprotein (VLDL) and low-density lipo-
protein (LDL) were calculated using the 
Friedewald formula (Friedewald et al. 1972). 
The atherogenic index was calculated for each 
child as total cholesterol/HDL. The hemato-
crit, hemoglobin, and leucocytes were deter-
mined using a standard method. A second 
plasma aliquot was stored at –70°C and ana-
lyzed after one thaw cycle for ADMA using an 
enzyme-linked immunosorbent assay (ADMA 
human ELISA Kit; Immundiagnostik AG, 
Lörrach, Germany). ADMA was assessed in 
duplicate (intra-assay coefficient of variation 
< 15%), and the average was recorded as the 
ADMA level. Two controls were included in 
the kit assay to control for quality. The mean 
(range) were 0.25 (0.19–0.32) µmol/L for con-
trol level 1 and 0.76 (0.57–0.95) µmol/L for 
level 2. In each assay, the values of the controls 
were in the range established by the manufac-
turer. In addition to ADMA quantification, 
adhesion molecules, such as sVCAM‑1 and 
soluble intercellular adhesion molecule‑1 
(sICAM‑1) were analyzed using ELISA 
(Invitrogen, Carlsbad, California, USA).

Evaluation of iAs exposure and metabo-
lism. The concentration of tAs in the urine 
was used to estimate individual exposure to 
iAs. The proportion of arsenic in each species 
(%iAs, %MAs, and %DMAs) was calculated 
by dividing the concentration of arsenic in 
each species by the tAs in urine.

Statistical analyses. We performed 
exploratory analyses to assess data quality and 
consistency and the distribution of the vari-
ables of interest. Continuous variables pre-
sented non-normal distribution except for 
ADMA and %MAs, which were normally 
distributed. All continuous variables are 
described as geometric mean and range, and 
also the mean ± SD are reported. Frequencies 
or percentages are reported for categorical 
variables. We used simple linear regression 
models to estimate associations of ADMA 
and cIMT, with potential confounders (age, 
sex, BMI or z‑score, atherogenic index, lipid 
serum profile, adhesion molecules, and fast-
ing plasma glucose) and with urine tAs and 
arsenic species. We also evaluated the effect of 
in utero exposure by simple linear regression 
analyses on the two outcomes of interest. In 
addition to evaluating urine tAs as a continu-
ous variable, we stratified exposure into three 
categories: < 35 ng/mL [where 35 ng/mL rep-
resents the Biological Exposure Index (BEI) 
or permissible limit for occupational As expo-
sure (American Conference of Governmental 
Industrial Hygienists 2004)], 35–70 ng/mL, 
and >  70  ng/mL (twice the BEI value). 
Additionally, a Wilcoxon-type test for trend 
was performed to evaluate cIMT increase 
across arsenic categories (Figure 1). Pearson’s 
correlation coefficient (rP) for plasma ADMA 
associations and Spearman’s correlation 
coefficient (rS) for plasma sVCAM‑1 and 
sICAM‑1 were performed among the main 

Figure 1. Box plots for cIMT by level of sum of inor-
ganic and methylated arsenic species in urine of 
children. The outer bounds of the boxes represent 
the interquartile range; the median is represented 
by the midline. The whiskers represent minimum 
and maximum values. Analysis of variance was per-
formed to assess the cIMT increase over tAs cat-
egories. Additionally, Wilcoxon-type test was used 
to evaluate trends across urinary arsenic categories 
(p = 0.027).
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exposure–outcome association. Multivariable 
linear regression analyses of associations with 
ADMA or cIMT were adjusted for potential 
confounding variables related to outcome, 
based on Wald tests with a p-value of < 0.20, 
or if their inclusion improved the model fit 
(based on the change in 10% of R2 value). 
The adjusted models also included age, which 
did not fulfill this statistical criterion but was 
considered to be biologically important. In 
the case of cIMT, the explanatory variable 
in the linear regression model was modeled 
as an untransformed continuous variable or 
as square transformed continuous variable. 
Because inferences based on square trans-
formed cIMT were comparable (data not 
shown), results are reported for cIMT as an 
untransformed variable for easier interpreta-
tion. Analysis for validation of the multiple 
regression with robust weight function were 
performed for cIMTmin analyses (Davidson 
and McKinnon 1993). Validation of the 
multiple regression ADMA model was per-
formed using studentized residuals. Model 
predictions were graphed against standard-
ized residuals to assess heteroscedasticity 
(Montgomery and Peck 1992). p-Values 
< 0.05 were considered statistically signifi-
cant. All statistical analyses were performed 
using STATA version 10 (StataCorp, College 
Station, TX, USA).

Results
Characteristics of the study population. Of 
the initial 199 child participants, three had 
no urine or blood samples, one was excluded 
due to an atrial septal defect, and 47 children 
had no ultrasonography. Most of the children 
(70%) were < 6 years old (age range, 3–14 
years) (Table 1). In total, 79% of children 
had urinary tAs values higher than the BEI 
of 35 ng/mL, and only 21% showed levels 
below this reference value. Using standard 
international BMI age- and sex-specific cut-
off points, 66% were classified as normal 
weight, 7% underweight, 18% overweight, 
and 9% obese (Table 1). There were no sig-
nificant differences between boys and girls 
in the parameters studied (data not shown), 
except for glucose (86.11 mg/dL in boys vs. 
80.03 mg/dL in girls; p = 0.0001), HDL 
(53.85 vs. 50.7 mg/dL; p = 0.0327), hemo-
globin (13.76 vs. 14.00%; p = 0.025), and 
sICAM‑1 (0.59 vs. 0.64 µg/mL; p = 0.0142).

Only 22% of the population reported any 
seafood consumption, and only 16% were 
exposed to secondhand smoke. Neither sea-
food consumption nor secondhand smoke 
were significant predictors of cIMT or 
ADMA (data not shown).

In unadjusted models, triglycerides, 
VLDL, sICAM‑1, and sVCAM‑1 levels were 
significant predictors of plasma ADMA con-
centration, and age was a marginally significant 

predictor (p = 0.06) (Table 2). The association 
among plasma ADMA and urinary tAs, MAs, 
and DMAs concentration had a p-value < 0.1. 
Sex, BMI z‑score, and BMI categories did not 
predict plasma ADMA. Atherogenic index 
and BMI z‑score were significant predictors 
of cIMTmin, and overweight and sICAM‑1 
were marginal predictors, whereas age and sex 
were not associated with cIMT (Table 2). In 
addition, cIMTmin diameter was positively 
associated with both unstratified and strati-
fied urinary tAs (with a monotonic increase in 
geometric mean cIMT with increasing cate
gorical exposure). Compared with the low-
est exposure group, estimated values of cIMT 
were 0.033 mm and 0.054 mm higher among 
those with tAs 35–70 and > 70ng/mL, respec-
tively (Table 2).

Association of cIMT with iAs exposure. 
cIMTmin was significantly associated with 
urine tAs based on simple linear regression 
(Figure 1) and after adjustment for athero-
genic factor, BMI z‑score, age, and plasma 

ADMA (Table 3). In contrast, tAs exposure 
was not correlated with plasma lipids or BMI 
(p > 0.05; data not shown). The multivariable 
regression model explained 18% of the vari-
ability in cIMTmin diameter, with the stron-
gest associations estimated for plasma ADMA 
concentration (0.068‑mm increase; 95% 
CI: 0.0117, 0.124 for a 1-µmol/L increase 
in ADMA) and tAs > 70 ng/mL (0.058‑mm 
increase; 95% CI: 0.0198, 0.095 compared 
with tAs < 35 ng/mL) (Table 3).

Associations of cardiovascular biomark-
ers with iAs exposure and metabolism. Plasma 
ADMA, sICAM‑1, and sVCAM‑1 were highly 
correlated (p < 0.05), and ADMA and sICAM 
biomarkers were also correlated with triglyc-
erides and VLDL (see Supplemental Material, 
Table S1). BMI, glucose, total cholesterol, 
HDL, LDL, and the atherogenic index were 
not significantly correlated with cardiovascu-
lar biomarkers (data not shown). ADMA was 
weakly correlated with urinary tAs (rP = 0.122; 
p = 0.092), MAs (rP = 0.121; p = 0.093), and 

Table 1. Child characteristics, urinary arsenicals levels, plasmatic biomarkers, and cIMT of study popula-
tion in Zimapan, Mexico.

Variable n Percent or GM (range) Mean ± SD
Sex

Male 107 54
Female 92 46

In utero exposure
Yes 164 82
No 35 18

Age (years) 199 5.1 (3–14) 5.26 ± 1.49
≤ 5 140 70
> 5 59 30

BMI (kg/m2) 195 16.02 (11.8–26) 16.17 ± 2.31
BMI z-score (percentile) 195 40.01 (1–99) 55.27 ± 30.68
Urinary arsenic (ng/mL) 195

iAs 5.41 (0.57–100.78) 8.70 ± 11.61
MAs 5.41 (0.21–55.67) 7.98 ± 8.31
DMAs 46.69 (4.93–236.95) 57.27 ± 40.22
tAs 59.14 (5.71–369.94) 74.31 ± 57.04

Urinary arsenic (%) 195
iAs 9.15 (2.33–72.08) 10.27 ± 6.21
MAs 9.14 (1.50–17.98) 9.67 ± 3.07
DMAs 78.95 (24.77–91.52) 79.59 ± 8.51

Plasma analysis 193
Glucose (mg/dL) 83 (61–130) 83 ± 11
Total cholesterol (mg/dL) 147 (13–284) 150 ± 29
Triglycerides (mg/dL) 73 (20–333) 81 ± 42
HDL cholesterol (mg/dL) 51 (30–103) 52 ± 12
LDL cholesterol (mg/dL) 79 (20–168) 82 ± 22
VLDL cholesterol (mg/dL) 15 (4–67) 16 ± 8
Atherogenic index 2.86 (1.2–5.3) 2.92 ± 0.58

Hemoglobin (g/dL) 194 13.86 (11.7–17.1) 13.89 ± 0.87
Hematocrit (%) 194 39.78 (33.5–48.7) 39.84 ± 2.32
Leucocytes (no./mL) 194 6.35 (3.4–12.8) 6.52 ± 1.56
Cardiovascular risk biomarkers

ADMA (µmol/L) 196 0.69 (0.23–1.43) 0.72 ± 0.19
sVCAM-1 (µg/mL) 177 1.50 (0.68–4.56) 1.56 ± 0.50
sICAM-1 (µg/mL) 196 0.60 (0.33–1.42) 0.62 ± 0.15

Carotid ultrasonography (mm)a 152
cIMTmin 0.32 (0.08–0.54) 0.33 ± 0.08
cIMTmean 0.43 (0.24–0.8) 0.44 ± 0.07
cIMTmax 0.54 (0.28–1.28) 0.55 ± 0.13

GM, geometric mean. 
acIMT values are minimum, mean, and maximum.
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DMAs (rP = 0.128; p = 0.076). sVCAM-1 was 
significantly correlated with age (rS = –0.17; 
p = 0.024).

In multivariable regression analysis, %iAs, 
sVCAM‑1, and cIMTmin were significantly 
associated with plasma ADMA (Table  4, 
Figure 2). The model explained 15% of the 
variability in plasma ADMA, with the stron-
gest predictors being cIMTmin diameter 
(0.419‑µmol/L increase in ADMA per 1-mm 
cIMTmin), age (0.0314‑µmol/L decrease per 
year), and %iAs (0.0147‑µmol/L increase per 
1-unit %iAs). Age was a stronger predictor 
of ADMA than was %iAs. %DMAs and tri-
glycerides were also significant predictors of 
ADMA. Finally, values of ADMA or cIMT 
diameter were not significantly associated 
with in utero arsenic exposure (p > 0.05; data 
not shown).

Discussion
Over recent decades, exposure to iAs in central 
Mexico and potential effects on human health 
have given rise to much concern (Del Razo 
et al. 2011). In our study of a pediatric popu
lation, we found that cIMT and plasma 
ADMA were increased in association with As 
levels in urine.

Previous studies have reported that 
cIMT is increased in children at high risk 
for cardiovascular disease because of familial 
hypercholesterolemia, type 1 diabetes, hav-
ing parents with premature myocardial 
infarction, or elevated levels of ultrasensitive 
C‑reactive protein compared with other 
children (Jarvisalo et al. 2001; Slyper 2004). 
Epidemiologic studies have also reported asso-
ciations between long-term iAs exposure and 
outcomes related to atherosclerosis in adults, 
including ischemic heart disease, cerebro
vascular disease, and peripheral vascular disease 
(Simeonova and Luster 2004). To our knowl-
edge, ours is the first epidemiologic study to 
report an association between iAs exposure 
and cIMT in children. Specifically, we esti-
mated a significant association between uri-
nary tAs (35–70 ng/mL and > 70 ng/mL) and 
cIMTmin in children, 70% of whom were 
< 6 years old. In the present study, cIMTmin 
was significantly associated with ADMA and 
urinary tAs. This suggests that the minimum 
cIMT diameter increase could represent the 
earliest morphologic changes related to arsenic 
exposure and/or ADMA increase.

Few studies have focused on early cardio
vascular effects of iAs exposure in children. 
One study based on autopsy findings for five 
children from an As-endemic area of Chile 
reported intimal thickening in the small- and 
medium-sized arteries; this similar vascular 
lesion was found in heart, stomach, intes-
tines, and mesentery (Rosenberg 1974). In 
other autopsy studies, the earliest abnormali-
ties observed in children 2–15 years of age 

with atherosclerotic risk factors were fatty 
streaks and fibrous plaques (Berenson et al. 
1998; Newman et al. 1991). Endothelial dys-
function may be the initial phenomenon in 
subclinical atherosclerosis that precedes thick-
ening in the vascular wall (Kallio et al. 2010). 
An increase in cIMT could be a consequence 
of effects of iAs on endothelial dysfunction, 
foam cell formation stimulation, reactive oxi-
dative stress production, proinflammatory 
chemokines and cytokines, inflammation, 
vascular smooth muscle cell proliferation, 

endothelial cell proliferation, platelet aggre-
gation, and decreased fibrinolytic activity 
(Balakumar and Kaur 2009; Simeonova and 
Luster 2004; Wang et al. 2002).

In multivariable regression analyses, urine 
tAs, plasma ADMA, and the atherogenic 
index were significant predictors of increased 
cIMT. But lipid serum profile was not cor-
related with tAs in our pediatric study pop-
ulation (data not shown), as shown in one 
report that confirms our results and is based 
on adults in Taiwan with exposures to high 

Table 3. Robust multivariable linear regression analysis of associations between cIMTmin and arsenic 
levels and cardiovascular markers in children. 

Explanatory variable βa (95% CI) p-Value
tAs in urine (35–70 ng/mL)b 0.035 (–0.0028, 0.072) 0.070
tAs in urine (> 70 ng/mL)b 0.058 (0.0198, 0.095) 0.003
Plasma ADMA (µmol/L) 0.068 (0.0117, 0.124) 0.018
Atherogenic index 0.019 (–0.0007, 0.038) 0.059
BMI z-score (percentile) 0.0005 (0.00007, 0.0009) 0.023
Age (years) 0.008 (–0.0011, 0.016) 0.088

R2 = 0.18; p = 0.0000; n = 141.
aAverage difference in cIMT (mm) per unit change in the explanatory variable. bSum of inorganic and methylated 
arsenic species.

Table 2. Relation of children characteristics, lipid serum profile, plasma adhesion molecules, and urinary 
arsenic exposure with plasma ADMA or cIMTmin.

Variable

ADMA (µmol/L) cIMTmin (mm)

β (95% CI) p-Value β (95% CI) p-Value
Age (years) –0.017 (–0.034, 0.0007) 0.061 0.005 (–0.005, 0.016) 0.290
Sex 0.041 (–0.012, 0.093) 0.130 0.010 (–0.016, 0.036) 0.451
BMI (kg/m2) 0.0055 (–0.006, 0.017) 0.353 0.006 (0.0004, 0.012) 0.037
BMI z-score (percentile) 0.0006 (–0.0002, 0.002) 0.147 0.0006 (0.0002, 0.0010) 0.005
BMI categories

Underweight 0.011 (–0.096, 0.119) 0.836 –0.023 (–0.073, 0.026) 0.348
Overweight 0.049 (–0.021, 0.12) 0.168 0.029 (–0.005, 0.063) 0.090
Obesity 0.029 (–0.064, 0.12) 0.54 0.011 (–0.035, 0.057) 0.633

Plasma analyses
Triglycerides (mg/dL) 0.0007 (0.00002, 0.0013) 0.043 0.0002 (–0.000082, 0.0005) 0.146
VLDL cholesterol (mg/dL) 0.0034 (0.00007, 0.007) 0.046 0.0012 (–0.00041, 0.0027) 0.147
Atherogenic index 0.0047 (–0.041, 0.051) 0.84 0.024 (0.0017, 0.046) 0.035

Adhesion molecules
sICAM-1 (µg/mL) 0.00024 (0.000065, 0.0004) 0.007 0.00008 (–5.16e–6, 0.00017) 0.065
sVCAM-1 (µg/mL) 0.0001 (0.000045, 0.00015) 0.000 0.00002 (–3.55e–6, 4.7e–5) 0.092

tAs categories (ng/mL)
35–70 –0.017 (–0.09, 0.055) 0.640 0.033 (–0.0004, 0.067) 0.053
> 70 0.010 (–0.064, 0.085) 0.785 0.054 (0.019, 0.089) 0.003

Urinary As (ng/mL)
tAs 0.0004 (–0.00007, 0.0009) 0.092 0.0002 (7.48e–6, 0.0005) 0.043
iAs 0.0012 (–0.0011, 0.004) 0.306 0.0009 (–0.0002, 0.002) 0.124
MAs 0.0028 (–0.0005, 0.006) 0.093 0.0013 (–0.0003, 0.003) 0.101
DMAs 0.0006 (–0.00006, 0.0013) 0.076 0.0003 (0.00003, 0.0007) 0.034

Males were compared with females. BMI categories were compared with normal weight category. tAs categories were 
compared with < 35 ng/mL category. Simple linear regression analyses were used to compare untransformed ADMA or 
cIMTmin with continuous variables or categorical data.

Table 4. Multivariable linear regression analysis of associations between plasma ADMA (µmol/L) in chil-
dren and explanatory variables. 

Explanatory variable βa (95% CI) p-Value
iAs (%) 0.0147 (0.003, 0.026) 0.014
DMAs (%) 0.006 (–0.0009, 0.0129) 0.086
sVCAM-1 (µg/mL) 0.000086 (0.00002, 0.00015) 0.008
Triglycerides (mg/dL) 0.00067 (–0.0002, 0.0016) 0.145
cIMTmin (mm) 0.4189 (0.0010, 0.837) 0.049
Age (years) –0.0314 (–0.056, –0.0069) 0.012

R2 = 0.19; adjusted R2 = 0.151; p = 0.0002; n = 128.
aAverage difference in ADMA in µmol/L per unit change in the explanatory variable.
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levels of arsenic and ischemic heart disease 
(Hsueh et al. 1998). Although lipids in serum 
are intimately related to atherosclerosis, our 
results suggest that early iAs-mediated effects 
on atherogenesis may be independent of the 
lipid serum profile. Median concentrations of 
plasma total cholesterol, HDL, VLDL, LDL, 
and triglycerides were consistent with levels 
recommended for the primary prevention of 
atherosclerosis beginning in childhood (Kavey 
et al. 2003) and were within the normal range 
reported previously for Mexican children 
(Perichart-Perera et al. 2007).

Although we did not find an association 
between in utero arsenic exposure and cIMT 
diameter or ADMA level, we cannot rule out 
a contribution of in utero arsenic exposure 
to the association between urine arsenic in 
childhood and cIMT because most of the 
mothers lived in the area during pregnancy 
(83%). Srivastava et  al. (2007) hypothe
sized that accelerated development of aortic 
lesions and vasorelaxation defects observed 
in Apo E–/– mice exposed to arsenic in utero 
was attributable to an arsenic-mediated reduc-
tion in NO availability. Our findings sug-
gest that the association between urinary tAs 
and cIMTmin in our pediatric study popula-
tion could have been mediated by an effect 

of iAs on ADMA, which is an endogenous 
inhibitor of NO.

Adhesion molecules and ADMA have 
been studied in children at risk of cardio
vascular disease due to hypertension, obesity, 
and a family history of cardiovascular disease 
(Ayer et al. 2009; Goonasekera et al. 2000). 
Adhesion molecules, such as sICAM-1 and 
sVCAM-1, have been used as early biomark-
ers of atherosclerosis because of their par-
ticipation in the initial step of the disease, 
in which they promote the translocation 
of monocytes and leucocytes to the arterial 
endothelium with subsequent migration to 
the subendothelial space, initiating the athero-
sclerosis process (Chen et al.2007; Glowinska 
et al. 2003). Although sICAM‑1 may be a 
less specific marker than sVCAM‑1, which 
is primarily expressed by activated endothe-
lial cells and muscle cells in atherosclerotic 
plaques (Blake and Ridker 2002), it is more 
predictive of cardiovascular disease in appar-
ently healthy subjects (de Lemos et al. 2000). 
sVCAM‑1 and sICAM‑1 have been correlated 
with iAs exposure in adults (Chen et al. 2007). 
In contrast, we did not find significant cor-
relations between both adhesion molecules 
and any arsenicals in the urine. Prospective 
cohort studies have reported that the plasma 

concentration of sICAM‑1 is elevated many 
years before an initial myocardial infarction 
(Hwang et al. 1997; Ridker et al. 1998) but 
sICAM‑1 has also been reported to be elevated 
in children with acute otitis media caused by 
bacterial infections (Liu et al. 2010). In con-
trast with the adhesion molecules, ADMA was 
associated with cIMT and with the relative 
proportion of iAs in our study population. In 
adults with peripheral arterial occlusive dis-
ease, there is a progressive reduction in uri-
nary nitrate and cGMP rates (markers of NO 
formation), which may be caused partly by 
accumulation of ADMA (Böger et al. 1997). 
ADMA plasma concentrations in patients 
with end-stage renal disease were higher in 
hemodialysis patients with manifested athero
sclerosis disease compared with hemodialysis 
patients without atherosclerosis disease 
(Kielstein et al. 1999). Nevertheless, addi-
tional research is needed to establish the utility 
of ADMA as a biomarker of environmentally 
mediated cardiovascular disease.

Urine %MAs was associated with carotid 
atherosclerosis in a previous case–control 
study of adults (Wu et al. 2006). %MAs was 
not a significant predictor of cIMT in our 
study population, but %DMAs was weakly 
associated with plasma ADMA concentration 

Figure 2. Predictors of plasma ADMA (µmol/L) in children according to multivariable linear regression. (A) Urinary %iAs, (B) urinary %DMAs, (C) plasma sVCAM-1, 
(D) plasma triglycerides, (E) cIMTmin, and (F) age, where e(...X) contains the regressor X after controlling for its relationship with other regressors. 
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in the multivariable model (p = 0.086). This 
result could be explained by differences in 
methylation capacity between children and 
adults. Children in Bangladesh were reported 
to have lower urinary %MAs and higher 
%DMAs than adults, suggesting that the 
second step in arsenic methylation may be 
more active in children (Chowdhury et al. 
2003). We found a positive and significant 
association between urine %iAs and plasma 
ADMA in the multivariable regression analysis 
(Table 4). A recent study of surgical samples 
from three coronary heart disease patients 
who lived in an arsenic area in Chile reported 
that iAs was the predominant arsenic species 
in cardiovascular tissue, whereas DMAs and 
MAs levels in the same samples were relatively 
low or undetectable (e.g., iAs concentration 
in the auricle was 49.2 µg/g, whereas MAs 
and DMAs were undetectable (Roman et al. 
2011). In Apo E–/– mice, an animal model of 
atherosclerosis, atheroma formation in arsenic-
exposed mice was accompanied by increas-
ing levels of iAs in the vessel wall (Simeonova 
et al. 2003).

The relative proportion of iAs in urine was 
significantly associated with plasma ADMA 
in our pediatric study population, in whom 
many potential confounding factors, such as 
smoking, diabetes, and sedentary lifestyle, were 
absent. This suggests that ADMA might affect 
the arterial wall early in life, rather than being 
a biomarker of age-related vascular degenera-
tion only, and that ADMA might play a role 
in early iAs-mediated atherosclerotic effects. 
ADMA is an endogenous inhibitor of nitric 
oxide synthase (NOS) that is derived from the 
proteolysis of proteins containing methylated 
arginine residues. NO has been characterized 
as the “endogenous antiatherosclerotic mole
cule” due to its antithrombotic, antioxidant, 
and vasodilatation properties, among others 
(Böger 2003). Therefore, any condition that 
reduces NO may promote atherosclerosis. A 
study of adults in Inner Mongolia, China, 
exposed to high levels of arsenic in well water 
reported a negative association between iAs 
exposure and stable plasma metabolites of NO, 
including nitrite and nitrate (NOx) (Pi et al. 
2000). Interestingly, the most robust correla-
tion with NOx depletion was %iAs in blood 
(p < 0.001). Although we did not measure 
iAs in blood, multivariable regression analy-
sis showed that %iAs in the urine was associ-
ated with plasma ADMA. Although several 
mechanisms underlying iAs exposure–medi-
ated NO depletion have been proposed, the 
association is not completely understood 
(Kumagai and Pi 2004). We believe that our 
findings suggest a new pathway in which iAs 
exposure could decrease NO levels and pro-
mote atherosclerotic disease. However, evi-
dence of NO-independent effects of ADMA 
on microvascular lesions in NOS-knockout 

and wild-type mice has also been reported 
(Suda et al. 2004).

To our knowledge, ours is the first epide-
miologic study to implicate ADMA in sub-
clinical atherosclerosis due to iAs exposure. 
In an experimental study of myelin altera-
tion in rats exposed to iAs via drinking water 
(36 µg/mL), plasma ADMA was significantly 
increased 4 months after treatment com-
pared with the control group [9.7 ± 0.6 vs. 
3.4 ± 0.6 nmol/mL (Zarazua et al. 2010)].

We cannot rule out the possibility of bias 
due to confounding by factors such as a fam-
ily history of stroke, cardiovascular disease, or 
diabetes, and the temporal relations between 
exposure and the outcomes that we evalu-
ated cannot be established due to the cross-
sectional nature of our analysis. However, 
additional studies are warranted given our 
findings of an association of iAs with cIMT 
and plasma ADMA in children.
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